Development of hybrid performance-based optimization algorithm for structures equipped with vibration damper devices

نویسندگان

چکیده

Abstract Nowadays, various types of vibration damping systems are being implemented in different buildings to diminish seismic effects on structures. However, engineers faced with the challenging task developing an optimum design for structures utilizing a proper type device based new techniques such as performance-based method. Therefore, this research was aimed at multi-objective optimization algorithm by hybridizing particle swarm (PSO) and gravitational search (GSA) obtain equipped damper devices Then, developed hybrid (PSOGSA) would be capable optimizing system simultaneously optimized details structural sections, including steel rebars, satisfying all criteria. For purpose, special process according method considering wide range systems. The proposed PSOGSA framework then 12-storey reinforced concrete structure dampers minimize weight while prescribed acceptance results indicated that able successfully optimize members well properties damper, which significantly improved response terms formation plastic hinges movements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables

A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...

متن کامل

Hybrid Simulation of a Frame Equipped with MR Damper by Utilizing Least Square Support Vector Machine

In hybrid simulation, the structure is divided into numerical and physical substructures to achieve more accurate responses in comparison to a full computational analysis. As a consequence of the lack of test facilities and actuators, and the budget limitation, only a few substructures can be modeled experimentally, whereas the others have to be modeled numerically. In this paper, a new hybrid ...

متن کامل

HYBRID COLLIDING BODIES OPTIMIZATION AND SINE COSINE ALGORITHM FOR OPTIMUM DESIGN OF STRUCTURES

Colliding Bodies Optimization (CBO) is a population-based metaheuristic algorithm that complies physics laws of momentum and energy. Due to the stagnation susceptibility of CBO by premature convergence and falling into local optima, some meritorious methodologies based on Sine Cosine Algorithm and a mutation operator were considered to mitigate the shortcomings mentioned earlier. Sine Cosine Al...

متن کامل

A Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses

In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...

متن کامل

VISCOUS DAMPER PLACEMENT OPTIMIZATION IN CONCRETE STRUCTURES USING COLLIDING BODIES ALGORITHM AND STORY DAMAGE INDEX

Dampers can reduce structural response under dynamic loads. Since dampers are costly, the design of structures equipped with dampers should make their application economically justifiable. Among the effective cost reduction factors is optimal damper placement. Hence, this study intended to find the optimal viscous damper placement using efficient optimization methods. Taking into account the no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archives of Civil and Mechanical Engineering

سال: 2023

ISSN: ['1644-9665', '2083-3318']

DOI: https://doi.org/10.1007/s43452-023-00665-z